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Abstract

The compliance fourth-rank tensor related to crystalline
or other anisotropic media belonging to the monoclinic
crystal system is spectrally decomposed for the ®rst time,
and its characteristic values and idempotent fourth-rank
tensors are established. Further, it is proven that the
idempotent tensors resolve the stress and strain second-
rank tensors into eigentensors, thus giving rise to a
decomposition of the total elastic strain-energy density
into non-interacting strain-energy parts. Several exam-
ples of representative inorganic crystals of the mono-
clinic system illustrate the results of the theoretical
analysis. It is also proven that the essential parameters
required for a coordinate-invariant characterization of
the elastic properties of a crystal exhibiting monoclinic
symmetry are both the six characteristic values of the
compliance tensor and seven dimensionless parameters.
These material constants, referred to as the eigenangles,
are shown to be accountable for the orientation of
the stress and strain eigentensors, when represented in
a stress coordinate system. Finally, the restrictions
dictated by the classical thermodynamical argument
on the elements of the compliance tensor, which are
necessary and suf®cient for the elastic strain-energy
density to be positive de®nite, are investigated for the
monoclinic symmetry.

1. Introduction

Tensors of the fourth rank embodying the elastic or
other property of crystalline anisotropic substances were
initially expanded (Srinivasan & Nigam, 1969) as a
linear combination of independent elementary tensors,
corresponding to scalar coef®cients, which remain
invariant under orthogonal coordinate transformations.
Next, the algebra of fourth-rank tensors of the 32 crystal
classes was broken down to irreducible subalgebras
(Walpole, 1981, 1984), offering insight into the tensor
structure and simplifying considerably the calculations
of sums, products and inverses between the tensors.

Conversely, the spectral decomposition was proven
(Rychlewski, 1984a,b) to be the simplest possible
decomposition of the elastic compliance S or stiffness C
fourth-rank tensors. Additionally, this decomposition
was preferable because of its ability to split these tensors

into idempotent fourth-rank tensors, which, in turn,
de®ned energy orthogonal stress and strain eigen-
tensors. Moreover, the spectral decomposition did not
correspond to the decompositions of both Walpole and
Srinivasan & Nigam, except for the trivial cases of
isotropic and cubic symmetry.

Nonetheless, the concepts of elastic eigenvalues, as
well as those of stress and strain eigentensors, were
introduced by Thomson (Lord Kelvin), who called them
the `Six principal elasticities and principal stress and
strain-types of an elastic solid' (Thomson, 1856, 1878). In
a time when access to the tensorial formulation of the
mathematical theory of elasticity was not feasible,
Thomson clearly perceived and established, using an
altogether different terminology, the unsurpassed
simplicity introduced through the notion of elastic
eigenvalues and eigentensors of compliances in the
analysis of the structure of the generally anisotropic
linearly elastic solid. It is, however, unfortunate that
Todhunter & Pearson (1886±93) criticized with a great
deal of skepticism the contribution of Thomson in this
area. In fact, Lord Kelvin's formulation was entirely
neglected for more than a century until Rychlewski
recreated the basic ideas of the analysis reported by
Lord Kelvin, exhibiting the mathematical structure of an
arbitrary linearly elastic anisotropic body.

Despite the fact that Rychlewski con®rmed the
application of the spectral decomposition principle on
the class of symmetric fourth-rank tensors, he did not
proceed to determine the eigenvalues and eigentensors
of the corresponding tensors. In fact, these were estab-
lished subsequently (Theocaris & Philippidis, 1989, 1990,
1991) and, combined with a characteristic angle, the
eigenangle !, provided an invariant speci®cation for the
elastic features of a transversely isotropic medium.
Then, the three-dimensional spectral decomposition was
extended to incorporate the two-dimensional plane
stress conditions (Theocaris & Sokolis, 1998).

In this paper, a full reduction of the compliance
fourth-rank tensor S is developed for crystalline media
belonging to the monoclinic system, based on the
spectral decomposition principle, for the ®rst time. The
characteristic values of the compliance tensor S are
determined and the elementary idempotent fourth-rank
tensors are established. These elementary tensors give
rise to stress and strain eigentensors, which split the
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elastic potential of the monoclinic medium into distinct
elements, designating the absence of a pure dilatational
strain-energy component. Further, it is proven that the
constitutive parameters, required for an invariant char-
acterization of the elastic properties of a crystal of the
monoclinic syngony, are the six distinct eigenvalues of
the compliance tensor S, in addition to a set of seven
dimensionless quantities, referred to as the eigenangles,
which are responsible for the orientation and alignment
of the stress and strain eigentensors in the six-dimen-
sional stress space. Next, the individual criteria in terms
of the elements of the compliance tensor, which are
necessary and suf®cient for the elastic strain energy to
be positive de®nite, are examined for monoclinic
symmetry. Finally, several examples of representative
inorganic crystals of the monoclinic system illustrate the
results of our theoretical analysis.

2. Linear elasticity of anisotropic media

The generalized anisotropic form of Hooke's law
(Hooke, 1678) states that each strain component is
directly proportional to each stress component or, in
symbolic indicial notation:

e � S � r or "ij � Sijkl�kl; �1�
where i; j; k; l � 1; 2 or 3 and the coef®cients of linearity
Sijkl are the coef®cients of the compliance fourth-rank
tensor S expressed in a Cartesian coordinate system. It is
further assumed that the deformations are measured
from the natural stress-free state and the in¯uence of
temperature and other ®elds is insigni®cant. In addition,
it is presumed that the stress tensor r, whose compo-
nents are �ij, and the linear strain tensor e, whose
components are "ij, are symmetric (Sokolnikoff, 1956).
As equations (1) stand, there are 81 components of the
compliance tensor S but, owing to the symmetry of the
stress r and strain e tensors, two important symmetry
restrictions are imposed on the compliance tensor S,
namely:

Sijkl � Sjikl; Sijkl � Sijlk; �2�
which reduce the number of independent components of
S to 36. Next, another symmetry constraint is imposed
on the compliance tensor S, based on the thermo-
dynamical argument that no work is produced by an
elastic medium in a closed loading cycle. This is the
symmetry which necessitates that the components with
subscripts ijkl and klij are equal:

Sijkl � Sklij: �3�
These reciprocal relations further reduce the number of
distinct compliance components to 21 in the most
general case. In addition, reciprocal relations (3) are of
thermodynamic origin, hence they are not dependent
upon the actual mechanism of elastic behaviour.

It should be noted that many different notations have
been proposed for the stress and strain components at
various times (Todhunter & Pearson, 1886±93; Voigt,
1910; Love, 1927; Timoshenko & Goodier, 1951;
Southwell, 1941; Cady, 1946; Wooster, 1949; Mason,
1950; Lekhnitskii, 1963; Nye, 1957; Hearmon, 1961). We
have used Nye's notation throughout this paper.

The generalized Hooke's law, expressed in (1)
utilizing a Cartesian fourth-rank tensor index notation,
may be represented in matrix notation as follows:

"11

"22

"33

2"23

2"13

2"12

26666664

37777775 �
S1111 S1122 S1133 2S1123 2S1113 2S1112

S1122 S2222 S2233 2S2223 2S2213 2S2212

S1133 S2233 S3333 2S3323 2S3313 2S3312

2S1123 2S2223 2S3323 4S2323 4S2313 4S2312

2S1113 2S2213 2S3313 4S2313 4S1313 4S1312

2S1112 2S2212 2S3312 4S2312 4S1312 4S1212

26666664

37777775
�11

�22

�33

�23

�13

�12

26666664

37777775:
�4�

Hooke's law is often expressed in its contracted
notation, the well known Voigt notation, which is
represented in the form

e � s � r or "p � spq�q �5�
or alternatively in the form

"1

"2

"3

"4

"5

"6

26666664

37777775 �
s11 s12 s13 s14 s15 s16

s12 s22 s23 s24 s25 s26

s13 s23 s33 s34 s35 s36

s14 s24 s34 s44 s45 s46

s15 s25 s35 s45 s55 s56

s16 s26 s36 s46 s56 s66

26666664

37777775
�1

�2

�3

�4

�5

�6

26666664

37777775; �6�

where p; q � 1; 2; . . . ; 6, utilizing a 6 � 6 matrix s.
However, one should be cautious employing the Voigt
notation, since this is not a tensorial notation, that is the
components spq do not form the components of a tensor
as do the Sijkl, which constitute the components of a
Cartesian fourth-rank tensor in three dimensions.
Nevertheless, the Voigt notation is important because it
is almost invariably used in experimental work of elas-
ticity and has become the standard in anisotropic elas-
ticity (Voigt, 1910; Nye, 1957; Hearmon, 1961). Then, the
equivalence between the components of the compliance
fourth-rank tensor S and the components of the 6 � 6
matrix s of the Voigt notation is shown to be

Sijkl � spq for p; q � 1; 2 or 3 �7a�
2Sijkl � spq for p � 1; 2 or 3 and q � 4; 5 or 6 �7b�
4Sijkl � spq for p; q � 4; 5 or 6; �7c�
in which the following contraction rule is applied for
replacing a pair of indices by a single contracted index:
11! 1, 22! 2, 33! 3, (23, 32)! 4, (13, 31)! 5,
(12, 21)! 6.

Furthermore, the full tensor suf®xes of the stresses r
and strains e are contracted according to the scheme:
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�11 � �1; �22 � �2; �33 � �3;

�23 � �4; �13 � �5; �12 � �6 �8a�
"11 � "1; "22 � "2; "33 � "3;

2"23 � "4; 2"13 � "5; 2"12 � "6: �8b�
The occurrence of the factor 2 in the equations relating
to the shear strains in (8b) should be particularly noted
and the shear strains "ij, i; j � 1; 2 or 3, i 6� j, carefully
distinguished from the contracted shear strains "p,
p � 4; 5 or 6, which do not form the components of a
tensor, as do the "ij.

3. Spectral decomposition of the monoclinic compliance
fourth-rank tensor

In this paper, our attention is restricted to the mono-
clinic crystal system, which is characterized by a plane of
elastic symmetry. In the following, the compliance
fourth-rank tensor S of a monoclinic linear elastic solid
is decomposed spectrally for the ®rst time. We assume
the Cartesian coordinate system, where the stress and
strain tensors are referred to, with the 3 axis oriented
normal to the plane of elastic symmetry. The compo-
nents of the compliance fourth-rank tensor S, associated
with the adopted Cartesian system, with respect to the
components of the 6 � 6 matrix s of the Voigt notation,
are given by:

S1111 � s11; S2222 � s22; S3333 � s33; �9a�
S1122 � S2211 � s12; S2233 � S3322 � s23;

S1133 � S3311 � s13; �9b�
S2323 � S2332 � S3223 � S3232 � 1

4 s44; �9c�
S1313 � S1331 � S3113 � S3131 � 1

4 s55; �9d�
S1212 � S1221 � S2112 � S2121 � 1

4 s66; �9e�
S1323 � S1332 � S3123 � S3132 � S2313 � S3213

� S2331 � S3231 � 1
4 s45; �9f �

S1112 � S1121 � S1211 � S2111 � 1
2 s16; �9g�

S2212 � S2221 � S1222 � S2122 � 1
2 s26; �9h�

S3312 � S3321 � S1233 � S2133 � 1
2 s36; �9i�

and all the remaining Sijkl components are zero.
The eigenvalues of the square matrix of rank six

associated with the tensor S were determined by solving
its characteristic equation:

det

s11 ÿ � s12 s13 0 0 s16=21=2

s12 s22 ÿ � s23 0 0 s26=21=2

s13 s23 s33 ÿ � 0 0 s36=21=2

0 0 0 s44=2ÿ � s45=2 0

0 0 0 s45=2 s55=2ÿ � 0

s16=21=2 s26=21=2 s36=21=2 0 0 s66=2ÿ �

2666666664

3777777775
� 0 �10�

introducing factors 1=21=2 and 1=2 in order to operate
with the 6 � 6 matrices associated with the compliance S
and stiffness C fourth-rank tensors using tensorial rules.
In fact, with this modi®cation, the components of the
associated 6 � 6 matrices form the components of a
Cartesian second-rank tensor in six dimensions. Equa-
tion (10) is then equivalent to

��4 � A�3 � B�2 � C��D�

� �2 ÿ � s44 � s55

2

� �
� s44s55 ÿ s2

45

4

� �� �
� 0 �11�

with

A � ÿs11 ÿ s22 ÿ s33 ÿ
s66

2
�12a�

B � �s11s22 � s11s33 � s22s33� � �s11 � s22 � s33�
s66

2

ÿ s2
12 � s2

13 � s2
23 �

s2
16

2
� s2

26

2
� s2

36

2

� �
�12b�

C � s11 s2
23 �

s2
26

2
� s2

36

2

� �
� s22 s2

13 �
s2

16

2
� s2

36

2

� �
� s33 s2

12 �
s2

16

2
� s2

26

2

� �
� s66

2
�s2

12 � s2
13 � s2

23

ÿ s11s12 ÿ s11s33 ÿ s22s33� ÿ �s11s22s33

� s23s26s36 � s13s16s36 � s12s16s26 � 2s12s13s23� �12c�
D � s16s26�s33s12 ÿ s13s23� � s26s36�s11s23 ÿ s12s13�
� s16s36�s22s13 ÿ s12s23� �

s66

2
�s11s22s33 � 2s12s13s23

ÿ s11s2
23 ÿ s22s2

13 ÿ s33s2
12� �

s2
16

2
�s2

23 ÿ s22s33�

� s2
26

2
�s2

13 ÿ s11s33� �
s2

36

2
�s2

12 ÿ s11s22�: �12d�

The polynomial inside the ®rst parentheses of relation
(11) is a quartic. Therefore, by substituting � � yÿ A=4,
the quartic polynomial is transformed to its reduced
form:

y4 � Py2 �Qy� R � 0; �13�
where

P � Bÿ 3A2

8
�14a�

Q � A3

8
ÿ AB

2
� C �14b�

R � ÿ3
A

4

� �4

�A2B

16
ÿ AC

4
�D: �14c�

Relation (13) may be expressed alternatively as follows:

y2 � z

2

� �2

ÿ �zÿ P�y2 ÿQy� z2

4
ÿ R

� �� �
� 0: �15�
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The second term of (15) is a quadratic function of y,
whose discriminant � is

� � z3 ÿ Pz2 ÿ 4Rz� 4PRÿQ2: �16�
We choose the discriminant equal to zero (� � 0), thus
allowing the quadratic function to become a perfect
square:

z3 ÿ Pz2 ÿ 4Rz� 4PRÿQ2 � 0: �17�
This is a cubic equation, which has to be transformed to
its reduced form in order to be solved. Substituting
� � zÿ P=3 gives the cubic equation in the form

�3 � P0��Q0 � 0 �18�
with

P0 � ÿ4Rÿ P2

3
�19a�

Q0 � ÿ 2P3

27
� 8PR

3
ÿQ2: �19b�

Further, with � � q� k=q, (18) may be recast as

q6 �Q0q3 � k3 � 0; �20�
in which

k � P0

3
: �21�

Moreover, with u � q3, (20) becomes a quadratic
equation, which is readily solved:

u2 �Qu� k3 � 0: �22�
Thus, the three solutions zm, m � 1; 2; 3, of the cubic
polynomial of relation (17) were determined to be

z1 � ÿ ÿ
Q0

2
� Q02

4
ÿ k3

� �1=2
" #1=3�1� i�3�1=2�

2

� k�ÿ1� i�3�1=2�
2�ÿQ0=2� �Q02=4ÿ k3�1=2�1=3

� P

3
�23a�

z2 � ÿQ0

2
� Q02

4
ÿ k3

� �1=2
" #1=3�1� i�3�1=2�

2

� k�ÿ1ÿ i�3�1=2�
2�ÿQ0=2� �Q02=4ÿ k3�1=2�1=3

� P

3
�23b�

z3 � ÿQ0

2
� Q02

4
ÿ k3

� �1=2
" #1=3

� k

�ÿQ0=2� �Q02=4ÿ k3�1=2�1=3
� P

3
: �23c�

Substitution in relation (15) for z � zm, m � 1; 2; 3,
gives the quartic equation in the form�

y2 � zm

2

�2

ÿ
�

yÿ Q

2�zm ÿ P�
�2

� 0: �24�

Relation (24) leads to two quadratic equations, which
are readily solved:

y2 � y� zm

2
ÿ Q

2�zm ÿ P�
� �

� 0: �25�

The eigenvalues �m, m � 1; . . . ; 6, of the associated
square matrix of rank six to tensor S de®ned by (9) were,
thus, evaluated to be:

�1 � ÿ
�zm ÿ P�1=2

2

� 1

2
ÿ�zm � P� � 2Q

�zm ÿ P�1=2

� �1=2

ÿA

4
�26a�

�2 � ÿ
�zm ÿ P�1=2

2

ÿ 1

2
ÿ�zm � P� � 2Q

�zm ÿ P�1=2

� �1=2

ÿA

4
�26b�

�3 �
�zm ÿ P�1=2

2

� 1

2
ÿ�zm � P� ÿ 2Q

�zm ÿ P�1=2

� �1=2

ÿA

4
�26c�

�4 �
�zm ÿ P�1=2

2

ÿ 1

2
ÿ�zm � P� ÿ 2Q

�zm ÿ P�1=2

� �1=2

ÿA

4
�26d�

�5 �
s44 � s55

4
� 1

2

1

4
�s44 ÿ s55�2 � s2

45

� �1=2

�26e�

�5 �
s44 � s55

4
ÿ 1

2

1

4
�s44 ÿ s55�2 � s2

45

� �1=2

: �26f �

The characteristic values �m, m � 1; . . . ; 6, de®ned by
relations (26), constitute the roots of the minimum
polynomial of the compliance tensor S, which in
factorized form may be written as

�Sÿ �1I� . . . �Sÿ �6I� � 0; �27�
where I is the unit element of the symmetric fourth-rank
tensor M space, which in symbolic notation is repre-
sented as M � sym(L 
 L). Furthermore, we refer to a
symmetric fourth-rank tensor if this is described by a
symmetric 6 � 6 matrix of the form given in (10), that is,
if this tensor satis®es (2) and (3).

The corresponding six idempotent fourth-rank
tensors Em, m � 1; . . . ; 6, of the spectral decomposition
of S were obtained as:

Em �
�Sÿ �1I� . . . �Sÿ �mÿ1I��Sÿ �m�1I� . . . �Sÿ �6I�
��m ÿ �1� . . . ��m ÿ �mÿ1���m ÿ �m�1� . . . ��m ÿ �6�

:

�28�
Tensors Em were, thus, evaluated to be:
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E1 � E1
ijkl � g
 g � gijgkl �29a�

E2 � E2
ijkl � r
 r � rijrkl �29b�

E3 � E3
ijkl � h
 h � hijhkl �29c�

E4 � E4
ijkl � s
 s � sijskl �29d�

E5 � E5
ijkl � t
 t � tijtkl �29e�

E6 � E6
ijkl � q
 q � qijqkl; �29f �

with g, r, h, s, t, q 2 L, where L represents the second-
rank symmetric tensor space over R3, which, together
with the ordinary de®nition of the scalar product,
constitutes a 6D Euclidean space. In symbolic notation,
the tensor space L is expressed by L � sym(R3 
 R3).

The second-rank symmetric tensors g, r, h, s, t and q,
appearing in (29) for the expressions of the idempotent
tensors Em, m � 1; . . . ; 6, are de®ned as follows:

g � g3a� g2b� g1c� g6d �30a�
r � r3a� r2b� r1c� r6d �30b�
h � h3a� h2b� h1c� h6d �30c�
s � ÿ sin �aÿ sin � cos �bÿ sin� cos � cos �c

� cos � cos � cos�d �30d�
t � cos f � sin e �30e�
q � ÿ sin f � cos e; �30f �
in which

g1 � sin � sin ' cos�

ÿ sin��ÿ sin � cos ' sin �� cos � sin � cos �� �31a�
g2 � ÿ sin � cos ' cos �ÿ cos � sin � sin � �31b�
g3 � cos � cos � �31c�
g6 � sin � sin ' sin�� cos��ÿ sin � cos ' sin �

� cos � sin � cos �� �31d�
r1 � �ÿ sin! cos 'ÿ cos � sin ' cos!� cos�

ÿ sin���ÿ sin! sin '� cos � cos ' cos!� sin �

� cos! sin � sin � cos �� �31e�
r2 � �ÿ sin! sin '� cos � cos ' cos!� cos �

ÿ cos! sin � sin � sin � �31f �
r3 � cos! sin � cos � �31g�
r6 � �ÿ sin! cos 'ÿ cos � sin ' cos!� sin�

� cos���ÿ sin! sin '� cos � cos' cos!� sin �

� cos! sin � sin � cos �� �31h�
h3 � �cos! cos 'ÿ cos � sin ' sin!� cos�

ÿ sin���cos! sin '� cos � cos' sin!� sin �

� sin! sin � sin � cos �� �31i�
h2 � �cos! sin 'ÿ cos � sin ' sin!� cos �

ÿ sin! sin � sin � sin � �31j�

h1 � sin! sin � cos � �31k�
h6 � �cos! cos 'ÿ cos � sin ' sin!� sin�

� cos���cos! sin '� cos � cos' sin!� sin �

� sin! sin � sin � cos ��: �31l�
Furthermore, the second-rank symmetric tensors a, b, c,
d, e and f emerging in relations (30), in the expressions
for the second-rank symmetric tensors g, r, h, s, t and q
are de®ned as follows:

a � k
 k; b � l
 l; c � m
m �32a�
d � 1

21=2
�l
m�m
 l� �32b�

e � 1

21=2
�k
 l� l
 k� �32c�

f � 1

21=2
�k
m�m
 k� �32d�

with k, l and m being the unit vectors of R3, associated
with the 3, 2 and 1 directions of the Cartesian coordinate
system.

Further, according to (9), it is easily noted that the
components of tensor S are both symmetrical and real,
thus, it follows that tensor S is self-adjoint or hermitian.
Hence, the proof that all the eigenvalues �m and
idempotent fourth-rank tensors Em, m � 1; . . . ; 6, of the
spectral decomposition of S are real is obtained at once,
based on the hermitian nature of the compliance fourth-
rank tensor S.

In addition, the seven angles �, �, �,  , �, ! and ',
appearing in relations (31), are called eigenangles and
are de®ned as follows:

tan � � Q4

�Z2
4 �W2

4 � 1�1=2
tan � � W4

�Z2
4 � 1�1=2

;

tan� � Z4 �33a�

cos 2 � �s44 ÿ s55�
2

� �
s44 ÿ s55

2

� �2

�s2
45

� �ÿ1=2

�33b�

tan � � Z2
4 �W2

4 � 1

Z2
4 �W2

4 �Q2
4 � 1

ÿ Q2
1

Z2
1 �W2

1 �Q2
1 � 1

� �1=2

� Q1

�Z2
1 �W2

1 �Q2
1 � 1�1=2

" #ÿ1

�33c�

tan! � Z2
4 �W2

4 � 1

Z2
4 �W2

4 �Q2
4 � 1

ÿ Q2
1

Z2
1 �W2

1 �Q2
1 � 1

�
ÿ Q2

2

Z2
2 �W2

2 �Q2
2 � 1

�1=2

� Q2

�Z2
2 �W2

2 �Q2
2 � 1�1=2

� �ÿ1

�33d�
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tan ' � Z2
4 �W2

4 � 1

Z2
4 �W2

4 �Q2
4 � 1

ÿ Q2
1

Z2
1 �W2

1 �Q2
1 � 1

� ��
� �Z2

4 �W2
4 � 1�2

�Z2
4 �W2

4 �Q2
4 � 1�2

� �ÿ1

�Z2
4 � 1�

ÿ Q2
1Q2

4W2
4

�Z2
1 �W2

1 �Q2
1 � 1��Z2

4 �W2
4 � 1�2

�1=2

� W2

�Z2
2 �W2

2 �Q2
2 � 1�1=2

�
� Q1Q4W4

�Z2
1 �W2

1 �Q2
1 � 1�1=2�Z2

4 �W2
4 � 1�

�ÿ1

;

�33e�
in which

Qi �
Fi ÿ C2

i =2Ai

2ÿ1=2�Ei ÿ BiCi=Ai�
� �

;

Wi �
Bi

Ai

Fi ÿ C2
i =2Ai

2ÿ1=2 Ei ÿ BiCi=Ai� �
� �

ÿ Ci

21=2Ai

�34a�

Zi � ÿ
s12

�s11 ÿ �i�
Bi

Ai

Fi ÿ C2
i =2Ai

2ÿ1=2�Ei ÿ BiCi=Ai�
� �

ÿ Ci

21=2Ai

� �
� s13

�s11 ÿ �i�
Fi ÿ C2

i =2Ai

2ÿ1=2�Ei ÿ BiCi=Ai�
� �

ÿ s16

21=2�s11 ÿ �i�
; �34b�

where

Ai � �s22 ÿ �i� ÿ
s2

12

�s11 ÿ �i�
� �

;

Bi � s23 ÿ
s12s13

�s11 ÿ �i�
� �

�35a�

Ci � s26 ÿ
s12s16

�s11 ÿ �i�
� �

;

Di � �s33 ÿ �i� ÿ
s2

13

�s11 ÿ �i�
� �

�35b�

Ei � s36 ÿ
s13s16

�s11 ÿ �i�
� �

;

Fi �
s66

2
ÿ �i

� �
ÿ s2

16

2�s11 ÿ �i�
� �

�35c�

and the subscript i acquires the values 1, 2, 3 or 4.
For the eigenvalues �m, m � 1; . . . ; 6, given by rela-

tions (26), and the corresponding idempotent fourth-
rank tensors Em, m � 1; . . . ; 6, expressed by relations
(29), the compliance fourth-rank tensor S is spectrally
decomposed. It is, hence, given the following expansion:

S � �1E1 � . . .� �6E6: �36�
Therefore, the six eigenvalues �m, m � 1; . . . ; 6, toge-
ther with the eigenangles �, �, �,  , �, ! and ' constitute
the 13 coordinate-invariant parameters necessary for the

characterization of the elastic properties of crystals
belonging to the monoclinic syngony.

Furthermore, the elementary idempotent tensors Em,
m � 1; . . . ; 6, decompose the unit element I of the
fourth-rank symmetric tensor space M and satisfy the
following set of equations:

I � E1 � . . .� E6 �37a�
Em � En � 0; m 6� n �37b�

Em � Em � Em: �37c�

In fact, the idempotent fourth-rank tensors Em,
m � 1; . . . ; 6, provide an orthogonal expansion of the
space M of symmetric fourth-rank tensors into orthog-
onal subspaces Mm as follows:

M � M1 � . . .�M6; Mm?Mn for m 6� n; �38�

where Em is the idempotent tensor on Mm for
m � 1; . . . ; 6.

4. Energy orthogonal states of stress and strain

The action of the idempotent fourth-rank tensors Em,
m � 1; . . . ; 6, on the symmetric second-rank tensor
space L leads to a decomposition of the L space into
subspaces Lm in the following manner:

L � L1 � . . .� L6; Lm?Ln for m 6� n: �39�

Therefore, the stress second-rank eigentensors rm of the
compliance fourth-rank tensor S for the monoclinic
symmetry are derived by the orthogonal projection of a
second-rank symmetric tensor r on subspaces Lm,
produced by the idempotent fourth-rank tensors Em, as
follows:

rm � Em � r; m � 1; . . . ; 6: �40�

Moreover, if the second-rank stress eigentensors rm

constitute eigenstates of tensor S, they should satisfy the
eigenvalue equation

S � rm � ��1E1 � . . .� �6E6� � rm � �mrm; �41�

in which index m varies between 1 and 6, and the �m

values are described in terms of relations (26).
Denoting by r the contracted stress tensor in the form

of a 6D vector, which is expressed by

r � ��1; �2; �3; �4; �5; �6�T �42�

and performing the computations implied by relations
(40), it was found that, in contracted notation:
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r1 � �g1�1 � g2�2 � g3�3 � g6�6�
� �g1; g2; g3; 0; 0; g6�T �43a�

r2 � �r1�1 � r2�2 � r3�3 � r6�6�
� �r1; r2; r3; 0; 0; r6�T �43b�

r3 � �h1�1 � h2�2 � h3�3 � h6�6�
� �h1; h2; h3; 0; 0; h6�T �43c�

r4 � �ÿ sin� cos � cos ��1 ÿ sin � cos ��2

ÿ sin ��3 � cos � cos � cos��6�
� �ÿ sin� cos � cos �;ÿ sin � cos �;

ÿ sin �; 0; 0; cos � cos � cos��T �43d�
r5 � �cos �4 � sin �5��0; 0; 0; cos ; sin ; 0�T �43e�
r6 � �ÿ sin �4 � cos �5�
� �0; 0; 0;ÿ sin ; cos ; 0�T; �43f �

where gi , ri and hi, i � 1; 2; 3; 6, are de®ned by relations
(31).

Relations (43) assert that the stress eigentensors,
corresponding to the spectral decomposition of the
compliance tensor S for a medium exhibiting monoclinic
symmetry, decompose the generic stress tensor r into six
elements, namely,

r � r1 � . . .� r6 �44�
with stress eigentensors r1, r2, r3 and r4 being a
superposition of simple shear with stressing along the 1,
2 and 3 directions of the adopted Cartesian coordinate
system, and stress eigentensors r5 and r6 constituting
simple shear states.

In addition, it is readily observed in relations (43) that
the contracted stress eigentensors r1, r2, r3 and r4 are
dependent on the values of eigenangles �, �, �, �, ! and
', expressed by relations (33), in terms of the compo-
nents of the compliance tensor S of the monoclinic body.
On the contrary, the remaining two contracted stress
eigentensors, namely r5 and r6, are dependent on the
value of eigenangle  , de®ned by relation (33b).

It is of interest to note that the generalized aniso-
tropic form of Hooke's law, represented by equation (1),
may be expressed as follows:

e � S � r � ��1E1 � . . .� �6E6� � r
� �1r1 � . . .� �6r6; �45�

so that the strain second-rank tensor e is readily split
into six eigentensors em:

e � e1 � . . .� e6: �46�
Therefore, the expression of Hooke's law for crystals
belonging to the monoclinic system may be decomposed
into six independent laws of proportionality of stress
and strain eigentensors in a well de®ned manner:

em � �mrm; for m � 1; . . . ; 6: �47�

Next, considering the de®nition of the total elastic
strain-energy density, we have that:

2T�r� � r � e
� r � S � r
� �r1 � . . .� r6� � ��1E1 � . . .� �6E6�
� �r1 � . . .� r6�
� �1r1 � r1 � . . .� �6r6 � r6: �48�

Relation (48) may be recast as

2T�r� � T�r1� � . . .� T�r6� � r1 � e1 � . . .� r6 � e6;

�49�
that is the elastic potential is decomposed into distinct
energy components, each associated with the same stress
eigentensor. Denoting by T�rm� the following quantity:

T�rm� � �m�rm � rm�; m � 1; . . . ; 6; �50�
it is noted that any stress eigenstate rm is associated with
its own potential T�rm�, which does not rely on the
action of the other rm. Then, it is readily noted by
inspection of relations (43) that the elastic strain-energy-
density components T�r1�; . . . ;T�r4� are dependent
upon the values of the eigenangles �, �, �, �, ! and ',
and correspond to both distortional and voluminal
alterations of the medium. On the contrary, the last two
elastic strain-energy components, namely T�r5� and
T�r6�, are dependent on the value of the eigenangle  
and are related exclusively to shape distortion of the
medium.

5. Geometric representation of stress eigentensors

A direct geometric representation of the r5 and r6

contracted stress eigentensors arises if we consider the
projections of the stress eigentensors on the shear stress
plane (�4, �5). Then, tensors r1 to r4 vanish, whereas
tensors r5 and r6 are represented by two orthogonal
unit vectors e5 and e6, shown in Fig. 1:

Fig. 1. Geometric representation of the stress eigentensors r5 and r6 of
the compliance fourth-rank tensor S related to monoclinic media on
the shear stress plane (�4, �5).
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e5 � �cos ; sin �T; e6 � �ÿ sin ; cos �T : �51�
It is, therefore, noted that vectors e5 and e6 subtend

angle  with respect to axes �4 and �5 of the shear stress
plane (�4, �5). Thus, an interesting geometric inter-
pretation is offered for eigenangle  as the angle
responsible for the alignment of stress eigenstates r5

and r6 in the shear stress plane (�4, �5). Besides, by
projecting the stress eigentensors on the four-dimen-
sional space system (�1, �2, �3, �6), tensors r5 and r6

disappear, whereas tensors r1 to r4 are represented by
the following orthonormal vectors em, m � 1; . . . ; 4:

e1 � �g1; g2; g3; g6�T �52a�
e2 � �r1; r2; r3; r6�T �52b�
e3 � �h1; h2; h3; h6�T �52c�
e4 � �ÿ sin� cos � cos �;ÿ sin � cos �;

ÿ sin �; cos � cos � cos��T : �52d�
In fact, the unit vectors em, m � 1; . . . ; 4, are the base
vectors of a coordinate system obtained by rotating the
stress space (�1, �2, �3, �6) successively through angles
!, �, ', �, � and �, by means of the following transfor-
mation matrices Am, m � 1; . . . ; 6:

A1 �

cos! sin! 0 0

ÿ sin! cos! 0 0

0 0 1 0

0 0 0 1

26664
37775;

A2 �

1 0 0 0

0 cos � sin � 0

0 ÿ sin � cos � 0

0 0 0 1

26664
37775 �53a�

A3 �

cos ' sin ' 0 0

ÿ sin ' cos ' 0 0

0 0 1 0

0 0 0 1

26664
37775;

A4 �

1 0 0 0

0 1 0 0

0 0 cos � sin �

0 0 ÿ sin � cos �

26664
37775 �53b�

A5 �

1 0 0 0

0 cos � 0 sin �

0 0 1 0

0 ÿ sin � 0 cos �

26664
37775;

A6 �

cos� 0 0 sin�

0 1 0 0

0 0 1 0

ÿ sin� 0 0 cos�

26664
37775: �53c�

Then, the complete transformation A is obtained by
considering the product of the six transformation
matrices, namely:

A � Q6
m�1

Am; �54�

which is an orthogonal matrix. Therefore, it is concluded
that eigenangles !, �, ', �, � and � determine the
orientation of eigentensors r1; . . . ; r4 in the stress space
(�1, �2, �3, �6). In addition, the sequence of rotations
employed to de®ne the orientation of the eigentensors is
to a certain extent arbitrary. Then, the initial rotation
could be about any of the four axes, whereas, in the
subsequent ®ve rotations, the only limitation is that no
two successive rotations may be about the same axis,
namely, no two successive rotations may be taken on the
same plane. Hence, a number of different conventions is
allowable in de®ning the six eigenangles as independent
parameters specifying the orientation of eigentensors in
the stress space (�1, �2, �3, �6). However, this space is
four dimensional and, as such, eigenvectors e1, . . . , e4

cannot be visualized. In spite of that, it is always feasible
to restrict our attention to three-dimensional pictures of
the four-dimensional stress space. Then, it is easily
observed by projecting the stress eigentensors on an
arbitrary stress space (�i, �j, �k), with i; j; k � 1; . . . ; 4
and i 6� j 6� k 6� i, that vectors e1 to e4 are nonvanishing.
Yet, vectors e1 to e4 are linearly dependent and, hence,
in order to acquire the three eigenvectors em,
m � 1; 2; 3, corresponding to the (�i, �j, �k) reference
system, one has to consider the transformation of this
system by means of three separate rotations through
angles �1, �2 and �3, expressed in matrix form Am,
m � 1; 2; 3, as follows:

A1 �
cos �1 sin �1 0

ÿ sin �1 cos �1 0

0 0 1

264
375 �55a�

A2 �
1 0 0

0 cos �2 sin �2

0 ÿ sin �2 cos �2

264
375 �55b�

A3 �
cos �3 sin �3 0

ÿ sin �3 cos �3 0

0 0 1

264
375: �55c�

Accordingly, the product matrix A is expressed by:

A � A3A2A1

�

cos �1 cos �3 sin �1 cos �3 sin �2 sin �3

ÿ sin �1 cos �2 sin �3 � cos �1 cos �2 sin �3

ÿ cos �1 sin �3 ÿ sin �1 sin �3 sin �2 cos �3

ÿ sin �1 cos �2 cos �3 � cos �1 cos �2 cos �3

sin �1 sin �2 ÿ cos �1 sin �2 cos �2

26666664

37777775;
�56�
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which is an orthogonal matrix. Moreover, angles �1, �2

and �3 are known as the Euler angles, which are intro-
duced into relations (55) to express in generalized
coordinates the elements of the orthogonal transfor-
mation matrix A. Therefore, the projections of stress
eigentensors ri, rj and rk are represented by a set of
three orthogonal vectors with associated unit vectors ei ,
ej and ek having as direction cosines:

ei � �sin �1 sin �2;ÿ cos �1 sin �2; cos �2�T �57a�
ej � �ÿ sin �1 cos �2 cos �3 ÿ cos �1 sin �3;

cos �1 cos �2 cos �3 ÿ sin �1 sin �3; sin �2 cos �3�T
�57b�

ek � �ÿ sin �1 cos �2 sin �3 � cos �1 cos �3;

cos �1 cos �2 sin �3 � sin �1 cos �3; sin �2 sin �3�T :
�57c�

It is possible to carry out the transformation from a
given Cartesian coordinate system to another by means
of three successive angular displacements �1, �2, �3,
performed in a speci®c sequence. Initially, frame
O�i�j�k is rotated through an angle �1 counterclockwise
with respect to the O�k � O�00 axis. The resulting
O��0�00 coordinate system is then rotated by an angle
�2 about the O� � O�00 axis, thus forming the subse-
quent system O��0�00, which is ®nally rotated about
the O
 axis by an angle �3, hence producing the ®nal
frame Or1r2r3 � O

0
00. Therefore, as seen in
Fig. 2, the unit vectors ej and ek lie on plane O�0�00,
subtending with plane O�k�

00 an angle equal to
(�=2ÿ �2). In addition, the �00 axis is inclined to the �j

axis by an angle (�=2ÿ �1), and the ej and ek unit
vectors subtend an angle �3 with axes �0 and �00.

6. Bounds of the components of the compliance tensor

It is generally accepted within the domain of classical
elasticity that the existence of the thermodynamical
constraint of positive-de®nite elastic potential sets
restrictive bounds on the values of the components of
the compliance tensor S. These constraints entailed on
the elements of the general anisotropic compliance
matrix were established by Voigt (1910), whereas, since
then, they have been proclaimed by Born & Huang
(1954) as well as by Hearmon (1961). Considering now
the conditions imposed on the elastic constants of
isotropic media, these are all well known and found in
Love (1927). Furthermore, the restrictions applicable to
media belonging to the cubic or hexagonal crystal
systems are explicitly stated by Nye (1957).

Relations for the bounds of elastic compliances for
transversely isotropic media were determined indepen-
dently by Eubanks & Sternberg (1954), as well as by
Lempriere (1968) and Christensen (1979), employing
mathematically equivalent formulations, which guaran-

teed positive values for the elastic potential. Lempriere
(1968) also examined the restrictions on the components
of the compliance tensor S valid for orthotropic media.
Recently, the bounds for the values of the elastic
compliances were successfully obtained by following an
alternative method based on the spectral decomposition

Fig. 2. (a), (b) The rotations de®ning the Euler angles �1, �2 and �3, and
(c) geometric representation of the stress eigentensors of the
monoclinic compliance fourth-rank tensor S in the (�i, �j, �k) stress
frame.
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analysis and the application of this analysis to both
transversely isotropic media (Theocaris & Philippidis,
1991) and plates (Theocaris & Sokolis, 1998).

One of the very interesting features of the spectral
analysis is its simplicity and clarity in proving the posi-
tive-de®nite character of the elastic strain energy. Given
relations (49) and (50), it is immediately noted that, in
order for the total elastic strain-energy density to be
positive de®nite, the eigenvalues of the compliance
tensor S need be positive de®nite:

�m > 0; m � f1; . . . ; 6g: �58�
This constraint requires that

fs11; s22; s33; s44; s55; s66g> 0 �59a�
s2

12 < s11s22; s2
13 < s11s33; s2

23 < s22s33 �59b�
s2

16 < s11s66; s2
26 < s22s66; s2

36 < s33s66;

s2
45 < s44s55 �59c�

s11�s22s33 ÿ s2
23� ÿ s12�s12s33 ÿ s13s23�

� s13�s12s23 ÿ s13s22�> 0 �59d�
s11�s22s66 ÿ s2

26� ÿ s12�s12s66 ÿ s16s26�
� s16�s12s26 ÿ s16s22�> 0 �59e�

s11�s33s66 ÿ s2
36� ÿ s13�s13s66 ÿ s16s36�

� s16�s13s36 ÿ s16s33�> 0 �59f �
s22�s33s66 ÿ s2

36� ÿ s23�s23s66 ÿ s26s36�
� s26�s23s36 ÿ s26s33�> 0 �59g�

s16s26�s33s12 ÿ s13s23� � s26s36�s11s23 ÿ s12s13�
� s16s36�s22s13 ÿ s12s23� �

s66

2
�s11s22s33 � 2s12s13s23

ÿ s11s2
23 ÿ s22s2

13 ÿ s33s2
12� �

s2
16

2
�s2

23 ÿ s22s33�

� s2
26

2
�s2

13 ÿ s11s33� �
s2

36

2
�s2

12 ÿ s11s22�> 0: �59h�

It is essential that inequalities (59) are all simultaneously
satis®ed in order for the elastic strain-energy density
to be positive de®nite. Hence, bounds of the elastic

constants based on partial ful®lment of these inequali-
ties are considered improper and should be excluded.

7. Numerical examples

The experimentally measured values of elastic compli-
ance-tensor components for several common repre-
sentative inorganic crystals belonging to the monoclinic
system are listed in Table 1 (Landolt-Bornstein, 1979,
1984). It must be pointed out that the multiple entries
appearing in Table 1 for dipotassium tartrate (DKT) and
for ethylenediamine tartrate (EDT) are due to
substantial disagreement between different investiga-
tors using usually reliable techniques.

Now, in order to ®x ideas, we shall try to evaluate,
using the numerical values of the compliance compo-
nents for dipotassium tartrate (DKT1), the eigenvalues,
the eigenangles and the stress and strain eigenvectors.
The experimental values, in units of 10ÿ2 GPaÿ1, are as
follows:

s11 � 4:75; s22 � 3:53; s33 � 2:40; s44 � 11:4 �60a�
s55 � 10:2; s66 � 12:3; s12 � ÿ1:74; s13 � ÿ0:80 �60b�

s23 � ÿ0:62; s16 � ÿ0:75; s26 � 0:80;

s36 � ÿ1:40; s45 � ÿ0:68: �60c�

For this dipotassium tartrate (DKT1), the eigenvalues,
in units of TPaÿ1, de®ned by relations (26), are

�1 � 30:575; �2 � 12:857 �61a�
�3 � 69:183; �4 � 55:685 �61b�
�5 � 58:534; �6 � 49:466: �61c�

The eigenvalues �1, . . . , �6 of the compliance tensor S, in
units of TPaÿ1, for the remaining inorganic crystals
belonging to the monoclinic system are tabulated in
Table 2. Moreover, the eigenangles �, �, �,  , �, ! and ',
de®ned by relations (33), are evaluated to be

Table 1. The values of the elastic compliances (in units of 10ÿ2 GPaÿ1) for a series of crystalline media belonging to the
monoclinic system

Crystals of the monoclinic system
Elastic compliances (� 10ÿ2 GPaÿ1)

Symbol Material s11 s22 s33 s44 s55 s66 s12 s13 s23 s16 s26 s36 s45

K2(C4H4O6) � 0.5H2O Dipotassium
tartrate (DKT1)

4.75 3.53 2.40 11.4 10.2 12.3 ÿ1.74 ÿ0.80 ÿ0.62 ÿ0.75 0.80 ÿ1.40 ÿ0.68

K2(C4H4O6) � 0.5H2O Dipotassium
tartrate (DKT2)

3.87 3.37 2.26 10.4 8.2 11.9 ÿ1.06 ÿ1.64 ÿ0.07 0.85 ÿ0.54 ÿ0.65 0.55

C2H6N2 � C4H6O6 Ethylenediamine
tartrate (EDT1)

3.34 3.65 10.0 19.2 11.7 19.1 ÿ0.3 ÿ3.0 ÿ1.8 ÿ1.7 1.5 ÿ2.65 0.38

C2H6N2 � C4H6O6 Ethylenediamine
tartrate (EDT2)

3.9 3.6 9.8 18.7 17.2 17.4 0.2 ÿ5.2 ÿ1.8 ÿ0.5 0.2 ÿ2.5 ÿ0.2

Na2S2O3 Sodium thiosulfate 5.02 15.6 6.74 22.3 32.7 21.2 ÿ3.23 ÿ0.62 ÿ7.19 1.52 ÿ18.2 11.0 10.0
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 � 24:299�; � � 15:892�;

� � 22:641�; � � ÿ52:723� �62a�
� � 129:792�; ! � 168:460�; ' � 148:321� �62b�

and the eigenangles of the compliance tensor S for the
remaining representative monoclinic crystals are given
in Table 3.

Then, the eigenvectors of the compliance fourth-rank
tensor S, as de®ned in (51) and (52), are found to be
given by

e1 � �0:315; 0:671;ÿ0:616; 0; 0ÿ 0:266�T �63a�
e2 � �0:444; 0:510; 0:724; 0; 0; 0:137�T �63b�
e3 � �0:452;ÿ0:390; 0:146; 0; 0;ÿ0:788�T �63c�
e4 � �0:706;ÿ0:370;ÿ0:274; 0; 0; 0:538�T �63d�
e5 � �0; 0; 0; 0:912;ÿ0:411; 0�T �63e�
e6 � �0; 0; 0;ÿ0:411;ÿ0:912; 0�T : �63f �

Table 4 presents the eigenvectors of the remaining
monoclinic crystals.

8. Discussion

The most important property of spectral analysis is its
ability to expose in a very natural way the analogy in the
elastic characteristics of isotropic and anisotropic media.
For instance, the form of the compliance tensor S was
established for an isotropic body during the ®rst quarter
of the last century:

S � 1

�
�1
 1� � 1

2�
I �64�

in terms of LameÂ elastic moduli � and �. Indeed, the
analogy between this expression and the spectral
expansion (36) of the compliance tensor S for aniso-
tropic media belonging to the monoclinic system is
easily recognized, whereas instead of LameÂ moduli one
has the eigenvalues of the compliance tensor S.

Furthermore, it is well known that the stress r and
strain e tensors of linearly isotropic elastic media are
decomposed into deviatoric and hydrostatic parts:

r � rD � 1
3 �tr r�1; e � eD � 1

3 �tr e�1; �65�

in which subscript D in rD and eD denotes the deviatoric
parts and the second terms denote the hydrostatic parts
rP and eP of the stress and strain tensors, respectively.
Then, this characteristic of isotropic elasticity encoun-
ters its analogy in the spectral decomposition of the
stress and strain tensors into six distinct non-interacting
stress states. However, it should be made clear that,
whereas the deviatoric and hydrostatic eigentensors
remain constant for all isotropic materials, the corre-
sponding eigentensors of anisotropic elasticity are
dependent on the elastic compliance components, thus
obtaining different values for different media.

Besides, the decomposition of the stress and strain
tensors in isotropic elastic bodies into hydrostatic and
deviatoric constituents results in an equivalent decom-
position of Hooke's law for isotropic materials into two
equations:

Table 3. The values of the set of eigenangles (�) of the compliance fourth-rank tensor S for a series of crystalline media
belonging to the monoclinic system

Crystals of the monoclinic system
Eigenangles (�)

Symbol Material � � � � ! '  

K2(C4H4O6) � 0.5H2O Dipotassium tartrate (DKT1) 15.89 22.64 ÿ52.72 129.79 168.46 148.32 24.29
K2(C4H4O6) � 0.5H2O Dipotassium tartrate (DKT2) ÿ19.47 ÿ21.58 49.73 ÿ60.57 ÿ17.70 170.90 166.72
C2H6N2 � C4H6O6 Ethylenediamine tartrate (EDT1) 26.26 ÿ2.03 ÿ153.78 88.96 63.24 154.61 2.89
C2H6N2 � C4H6O6 Ethylenediamine tartrate (EDT2) ÿ9.61 2.61 15.58 89.02 122.10 17.16 172.53
Na2S2O3 Sodium thiosulfate 27.67 16.99 260.49 36.30 131.51 174.41 58.73

Table 2. The values of the six eigenvalues (in units of TPaÿ1) of the compliance fourth-rank tensor S for a series of
crystalline media belonging to the monoclinic system

Crystals of the monoclinic system
Eigenvalues (TPaÿ1)

Symbol Material �1 �2 �3 �4 �5 �6

K2(C4H4O6) � 0.5H2O Dipotassium tartrate (DKT1) 30.575 12.857 69.183 55.685 58.534 49.466
K2(C4H4O6) � 0.5H2O Dipotassium tartrate (DKT1) 31.454 10.532 65.249 47.265 52.649 40.351
C2H6N2 � C4H6O6 Ethylenediamine tartrate (EDT1) 34.748 14.846 124.77 91.299 96.096 58.404
C2H6N2 � C4H6O6 Ethylenediamine tartrate (EDT2) 35.004 50.395 135.15 84.809 93.631 85.869
Na2S2O3 Sodium thiosulfate 13.716 ÿ6.678 310.69 61.864 193.86 81.144



646 SPECTRAL DECOMPOSITION OF THE LINEAR ELASTIC TENSOR

1
3 �tr r�1 � 1

3 �3�� 2���tr e�1; rD � 2�eD �66�
between the hydrostatic and deviatoric stress and strain
eigentensors. Then, the generalized anisotropic Hooke's
law valid for monoclinic media, which is formulated
alternatively in the equivalent form of a system of six
non-interacting mutually orthogonal laws of direct
proportionality, expressed by relations (47), may be
thought of as a generalization of equations (66) above.

Finally, the stress and strain eigentensors were proven
to partition directly the elastic strain-energy density into
distinct strain-energy constituents. Again, an analogy is
revealed between the splitting of the total elastic strain-
energy density of the monoclinic medium and the
corresponding splitting valid for the isotropic medium,
which is given in the form

T�r� � T�rP� � T�rD�
� 1

18K
�tr r�2 � 1

2G
tr r2 ÿ 1

3 �tr r�2� �
; �67�

where T�rD� is the deviatoric strain energy and T�rP� is
the hydrostatic strain energy, corresponding to the
deviatoric and hydrostatic stresses and strains respec-
tively.

However, the decomposition of the elastic potential
that is valid for the isotropic medium is not valid for the
monoclinic one. Hence, it is shown that a generalization
of the decomposition of the elastic strain-energy density
into components corresponding to sole dilatational and
distortional types of energy, valid for the isotropic
medium as well as for cubic crystals, is impossible for the
monoclinic medium, since the second-rank eigentensors
of the compliance fourth-rank tensor S do not include
the spherical tensor 1. Thus, an explanation is given for
the failure of the studies undertaken (Olszak &
Urbanowski, 1956; Olszak & Ostrowska-Maciejewska,

1985), which aimed to generalize the Huber±Mises±
Hencky criterion to hold for anisotropic media, there-
fore establishing the distortional component of the
elastic strain-energy density as the critical failure
quantity.

In conclusion, the spectral decomposition of the
compliance fourth-rank tensor S allows the possibility of
generalization of well known characteristics of isotropic
linear elastic bodies to anisotropic ones, thus offering to
the theory of anisotropic media in the elastic domain a
status comparable to that of isotropic elasticity.
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